

The following paper discusses the performance of ArrayMiner by Optimal Design as
compared with the standard k-Means procedure. The paper was published in Proceedings of
the 2001 International Conference on Mathematics and Engineering Techniques in Medicine
and Biological Sciences (METMBS'2001), Las Vegas, Nevada, USA, June 25-28, 2001.

Using k-Means? Consider ArrayMiner

Emanuel Falkenauer*+ and Arnaud Marchand+

* Brussels University (ULB)
CAD Department

Av. F. D. Roosevelt 50
B-1050 Brussels, Belgium

+ Optimal Design
Av. De l’Orée 14 bte 11

B-1000 Brussels, Belgium

Abstract - With the (near-)availability of
complete sequences of human and other
genomes, research effort is turning from
obtaining the sequence itself towards
determining the biological function of the
genes within the sequence. One approach,
made practically feasible with the advent of
DNA microarray technology, consists of
clustering of genes into groups of coexpressed
genes, i.e. genes exhibiting similar behavior in
some circumstances. Among the various
methods used for identification of groups of
coexpressed genes, k-Means is one of the most
popular. However, we show here that k-Means
is a highly unreliable method of clustering,
yielding high-quality solutions with low
probability. We then present the ArrayMiner
software based on Genetic Algorithms, which
addresses the drawback, supplying
high-quality solutions in short time with very
high reliability.

1. Clustering of Expression Profiles
With the (near-)availability of complete
sequences of human and other genomes such
as Drosophila and Arabidopsis, genomics has
produced a significant wealth of sequence
data, and the stage has been set for the next
task, namely identifying the biological
function of the genes within those sequences.
Indeed, only this latter knowledge will enable
researchers to establish correspondences
between diseases and the genome, paving the
route to new medication. A major difficulty
lies with the fact that the detailed phenomena
taking place within organisms are not fully

understood and many probably remain to be
discovered. Identifying the phenomena and the
genes involved, together with the ways in
which the genes interact, constitutes the major
challenge of “post-sequencing” genetics.
One approach to achieve this consists in
identification of groups of coexpressed genes,
i.e. groups of genes that behave similarly in
some conditions. The rationale behind this
approach is that similarly behaving genes
probably participate together in some
phenomenon or have similar functions –
 identifying such groups may thus help in
identifying the phenomenon, discovering
previously unknown phenomena, or assigning
previously unknown functions to genes. As an
additional benefit, clustering gene expression
data into groups reduces the unmanageable
volume of data into data sets that can be more
easily handled by biologists.
In this approach, each gene (or ORF) is
represented by an expression profile, i.e. a
series of numerical values of its activity. The
profile of a gene may correspond to a set of
readings of the gene’s activity under various
conditions, or be a time-series of the gene’s
activity after some event. The aim of
clustering of the expression profiles being to
decide which genes exhibit similar behaviors
(i.e., are coexpressed), a measure of similarity
between profiles must be defined. Several can
be found in the literature, including the
Euclidean distance, the correlation, and the
Pearson coefficient, this last measure being
widely used for the time-series profiles, as it
measures the similarity of the shapes, rather

than the absolute values of the measurements
of the two profiles.

2. The k-Means Technique
2.1 Approach

One of the most popular clustering techniques
is k-Means, to the extent that it is hardly
possible to find gene expression clustering
software that would not offer k-Means as a
method of identification of groups of
coexpressed genes. Given the user-supplied
parameter of the number of groups, k-Means
finds groups of genes such that within any
group, all profiles in that group are closer to
the average profile (centroid) of that group
than to the average of any other group.

Intuitively at least then, the solution supplied
by k-Means indeed groups together genes with
the most similar behaviors.
Mathematically, k-Means is usually presented
as supplying clusters with minimal total
variance, i.e., a method that minimizes the sum
of squares of distances between the data points
and their associated centroids. The criterion of
minimal total variance yields the most
“compact” clusters, an intuitively appealing
criterion of quality of a solution. However, as
we show below, there is a “grain of salt” to
this, as k-Means is only a very locally optimal
technique.

2.2 Operation

K-Means proceeds from an initial position of
the given number of group centroids, by
iterative assignment of the profiles to their
closest centroid followed by adjustment of the
centroids’ positions into the centers of the
resulting groups. The process is illustrated in
Figure 1 on a simple example with 11 data
points in three groups.
The algorithm terminates when a stable
configuration is reached, i.e. when the
partition of the profiles into groups does not
change anymore. The process usually
converges into a stable solution in a low
number of iterations, making k-Means a very
fast algorithm.

A1

B1

C1

A2

B 2

C 2

A 2
B 2

C 2
A3

B3

C3

A3 B 3
C 3

Figure 1: Successive stages of the k-Means algorithm

2.3 The Caveat

The solution obtained in Figure 1 is at least
intuitively the “right” one, as the three groups
are well separated and of low variance (the
profiles within each group are close to one
another). However, recall that k-Means
terminates as soon as a stable configuration is
reached. Depending on the initial positions of
the centroids, this may lead to very different
solutions being supplied by the algorithm.
Indeed, for the twelve profiles in Figure 1,
there are at least seven different k-Means
solutions in three groups, depicted in Figure

21. T
algor
centr
espe
intui
dispe
Clea
diver
intui
one i
The
initia
know
limit
solut
prop
posit
indu
the k
only
place
unkn
such
of th
Give
allow
reaso
cave
diffe
retai
with
initia
rand
Supp
supp

1 Th
propo
Figure 2: Seven k-Means partitions of the data in Figure 1
hey have been obtained by starting the
ithm with different initial positions of the
oids. The last of the seven solutions is
cially noteworthy, as the members of the
tively correct group C of Figure 1 are
rsed over three different groups there.

rly, k-Means can supply solutions of wide
sity. Some, like the one in Figure 1, are
tively appealing, while others, like the last
n Figure 2, are much less so.
sensitivity of k-Means to the choice of the
l positions of the centroids is a well
n problem. Consequently, in order to

 the chances of landing in a suboptimal
ion, several techniques have been
osed for selecting the “best” initial
ions of the centroids, with the aim of
cing a high-quality solution at the end of
-Means run. However, that approach can

 be successful if the centroids are initially
d near the centers of the clusters that are
own at the start of the procedure, and
 an a priori determination of the positions
e clusters is difficult.
n that the high speed of the algorithm
s for numerous restarts within a
nable time, the standard solution to this

at is running k-Means several times from
rent initial positions of the centroids and
ning the best clustering found, i.e., the one
 the smallest total variance. The various
l positions are typically selected at

om.
osing k-Means is a robust technique
lying a reasonably small number of

different solutions, that approach should yield
the best clustering in an acceptably short
computation time. In order to assess whether
such a way of proceeding with k-Means is
practically feasible, we have considered the set
of data depicted in Figure 3. This data set is
again easily handled visually, but it is closer in
size to the amounts of expression profile data
usually processed in real world. The example
was generated by a juxtaposition of 21
gaussian distributions, a property easily
verified with the bare eye. Consequently, we
looked at the number of different solutions in
21 clusters that k-Means could supply on those
data.

e radii of the circles in Figure 2 are
rtional to the standard deviation.

In order to determine the number of different
k-Means solutions, one would in principle be
required to start the algorithm from every
possible initial configuration of the centroids.
However, there are infinitely many of them, so
we restricted the experiment, considering only
the configurations where each centroid is
initially placed in one of the data points.
Unfortunately, that restriction still leaves too
many initial configurations to be tested, as
there are more than (2500-21)21 / 21! > 1051
ways of selecting 21 items among the 2500 in
the figure. We have therefore generated 10000
initial configurations by placing the centroids
in data points selected at random (without
replacement). The outcome of the test was
quite spectacular, since starting from the
10000 initial positions of the centroids,
k-Means supplied a staggering 9874 different
solutions. The solutions are not reproduced
here, for obvious space reasons. However,
they can be accessed at the URL given below.

Th
fa
ve
wo
th
m
fa

3.
3.

Th
wi
cr
wi
re
th
m
clu
av
on
so
of
sp
he
Al
re
us
m
Ge
op
pr
GA
of
cr

problem. The parts are combined together to
produce novel complete solutions of high
quality with high probability. Starting with an
initial pool of solutions generated largely at
random, a GA iteratively improves the pool by
combining the best members of the pool,
yielding solutions of increasing quality.
The originality of the GGA is that it promotes
groups of items during inheritance. Since the
GGA’s groups naturally correspond to the
clusters of expression profiles, this proves to
be an extremely effective technique for finding
high-quality clusters in the expression profile
data. Indeed, a good clustering of the data
necessarily consists of at least some clusters
fitting well the structure of the data, i.e.,
Figure 3: A more realistic 2D data set
e experiment illustrates that k-Means is very
r from being a robust technique. Given that
ry few of the currently available software
uld run the procedure thousands of times,

is implies that the solutions obtained with
ost current software using k-Means have in
ct little chance of being of high quality.

 The ArrayMiner Software
1 The Technique Used

e popularity of the k-Means method is
tness to the fact that the minimal variance
iterion for measuring clustering quality is
dely adopted. Consequently, the current
lease of the ArrayMiner software follows
at criterion, i.e., it searches for solutions of
inimal total variance in a given number of
sters. However, unlike most other currently

ailable methods, ArrayMiner does not rely
 k-Means in its search for high-quality
lutions. Rather, it is based on the technique
 Grouping Genetic Algorithms [1]. Obvious
ace constraints do not allow us to explain
re the details of the Grouping Genetic
gorithm (GGA), the interested reader should
fer to the Falkenauer book. Nevertheless, let
 at least explain the rationale behind the
ethod.
netic Algorithms (GAs) [3] are an
timization technique inspired by the
ocesses of evolution of species in Nature. A

 proceeds by promoting high-quality parts
 solutions in a process of inheritance when
eating new solutions to the optimization

clusters of low variance, well separated from
the other data points. Promoting such clusters
during inheritance thus improves the overall fit
of the clusters to the data, yielding solution of
low total variance.

3.2 Why is ArrayMiner Different

ArrayMiner thus stands out in comparison
with other currently available software for
expression profile clustering in that it uses a
well-defined optimization process (the GGA)
in search of the best possible clustering
solution, using a well-defined measure of
quality (the total variance of the clusters, being
minimized). In contrast, most other software
uses a heuristic one-shot procedure (k-Means
or other) in hopes of arriving at a good
solution to the problem. If the heuristic fails
and produces a mediocre solution, then that’s
what the user will have to do with. That this
probably happens frequently is nicely
illustrated by the fact that none of the currently
available software we know of dares to report
a measure of quality of the clusters they
supply, such as the actual value of the total
variance of the clusters.

3.3 Why does it Matter in Practice

The use of a sophisticated optimization
algorithm in ArrayMiner is all-important.
Indeed, it can be shown that finding a set of
clusters with the lowest total variance is in fact
a very difficult problem (it is NP-hard, [2]),
which implies that fast one-shot heuristics
simply cannot be expected to perform well. As

a result, they will supply suboptimal solutions
with high probability. Indeed, as we have
shown above, k-Means is extremely prone to
performing below expectations.
For the biologist who runs the clustering
software, the quality of the clustering is of
significant importance, as he or she interprets
the clusters as associations of genes that
behave similarly. Since the detailed
phenomena underlying the observed
expression profiles are often yet to be
discovered, the fact that some genes are
associated while others are not will typically
prompt the biologist to examine hypotheses on
why the genes associated in a cluster would
behave similarly, and differently from the
genes outside the cluster.
Suppose now that the clusters supplied to the
biologist are of poor quality, such as in the last
part of Figure 2. Considering such a solution
will lead the biologist into a painful
examination (and, hopefully, rejection) of
hypotheses purportedly explaining the bogus
associations suggested by the ill-formed
clusters in that solution. Indeed, the genes in
those clusters do not in fact behave similarly,
they have just been mistakenly associated due
to the poor performance of the clustering
algorithm. Conversely, a poor solution
obviously means that better ones are not
supplied. It thus prevents the biologist from
examining the probably more useful
associations, such as the ones in the first part
of Figure 1. This may cause the biologist to
miss important biological phenomena, a
potentially serious hindrance on their research.

3.4 ArrayMiner’s Performance
3.4.1 Solution Quality and Speed

In order to be of real use to biologists, the
solutions supplied by a clustering algorithm
must be of high quality, which is why
ArrayMiner exploits an algorithm performing
a true optimization of the clustering. However,
in order to be practically usable, an algorithm
must also be reasonably fast. On difficult
problems like the one discussed here, the
challenge is to design an algorithm supplying
high-quality solutions on short notice.
In this respect, the GGA incorporated in
ArrayMiner fares very well. As an illustration,
consider the data in Figure 3. Running the bare

k-Means procedure 10000 times took about 35
minutes on a PIII-800 machine. The best
among those 10000 solutions was found just
once in those 10000 runs of k-Means,
illustrating the high instability of the k-Means
algorithm. Yet ArrayMiner’s GGA found that
same solution in just 4 minutes on average
(see below).

3.4.2 Reliability

If the biologist is to have any confidence in the
clusters of genes supplied by a clustering tool,
the tool must consistently deliver high-quality
solutions. Indeed, if it does not, then any given
solution supplied by the tool can be considered
as a largely random pick among numerous
different solutions. In that case, the biologist
would have good reasons to question why the
one proposed should be worthy of extensive
scrutiny, rather than any other.
As we have seen above, the bare k-Means
algorithm fares extremely poorly in this
respect: it found the best solution to the simple
problem in Figure 3 only once in 10000 trials.
In other words, even on that simple example,
the bare k-Means is about ten thousands times
likelier to supply the wrong clusters than to
supply the correct ones.
In order to assess the reliability of
ArrayMiner, we have run it 20 times on the
example, starting with different initial
conditions. In those 20 runs, ArrayMiner
found the best of the 10000-trials solutions
every time. Finding that one solution2 on
numerous runs started from different initial
conditions suggests that it is probably the
globally optimal solution to the problem, yet
ArrayMiner was able to find it in very
reasonable time (row RND2500 in Table 1).
The two-dimensional example in Figure 3 is
actually quite easy. Testing ArrayMiner on
real gene expression data further demonstrates
its advantage over simple k-Means. The
following additional data sets, all clustered
into 10 groups, have their corresponding
entries in Table 1:
• YDSHIFT: 1446 profiles of the yeast

diauxic shift (7 time points)

2 Equality based on identical cluster memberships,
rather than a mere equality of total variance.

• RAT: the LNP/NINDS/NIH
profiles of rat nervo
development (9 time points
the demo version of
software by Silicon Genetics

• YCELL: the “ACGCGT in
of 507 profiles (16 time p
yeast cell cycle available
version of GeneSpring

Table 1 deserves several comme
produced well in excess of 9
solutions when started from
configurations, in every case. Y
the easy RND2500, it never foun
solution. ArrayMiner was signif
in finding solutions of equal or
Most importantly though, sin
solution found by ArrayMiner w
each of the 20 successive runs o
data sets, those solutions are
global optima. ArrayMiner thu
found the probable best cluste
case, and it did so within ve
execution times.

4. Conclusions
Clustering of gene expressio
clusters of minimal variance
problem on which fast one-sh
cannot be expected to perform ad
have shown that k-Means, one
popular techniques for tackling th
a very unreliable method, extrem
supplying solutions of lo
Consequently, biologists using
expect to work with bogus gro

Data set 100
 10kTime
RND2500 35
YDSHIFT 39
RAT 1.5
YCELL 14

10kTime: Time to perform 10
10000 trials; 10kBest: Total v
successive runs of ArrayMiner
trials of k-Means; Best: Total
over 20 successive runs of A
800/Win2000.
Table 1: ArrayMiner Performance

00 k-Means Trials ArrayMiner
10kNbrSols 10kBest TimeTo10k Best TimeToBest

9874 2751149 4 2751149 4
9650 21.4911 2 21.4875 8
9982 1.8527 0.04 1.8343 0.09

10000 32.3130 6 32.2871 17

000 trials of k-Means; 10kNbrSols: Number of distinct solutions in
ariance of the best k-Means trial; TimeTo10k: Average time over 20
 to find a solution as good as or better than the best found in 10000
 variance of ArrayMiner’s best solution; TimeToBest: Average time
rrayMiner to find the best solution. All times in minutes on a PIII-
 set of 112
us system

) available in
GeneSpring

all ORFs” set
oints) of the
in the demo

nts. K-Means
500 different
10000 initial
et except for
d the optimal
icantly faster

better quality.
ce the best

as identical in
n each of the
probably the
s consistently
ring in each

ry reasonable

n data into
is a difficult
ot heuristics
equately. We

 of the most
e problem, is
ely prone to
w quality.

k-Means may
ups of genes

that are in fact not coexpressed on the one
hand, and miss important groups of
coexpressed genes on the other. We have then
presented the ArrayMiner software that uses a
sophisticated optimization technique in
searching for the best possible clusters.
Experimental results show that ArrayMiner
supplies excellent solutions with very high
reliability, and it does so within reasonably
short execution times.
Further information on ArrayMiner is
available at http://www.optimaldesign.com.

5. References
[1] Falkenauer E. Genetic Algorithms

and Grouping Problems. Wiley, 1998.
[2] Garey M. R. and Johnson D. S.

Computers and Intractability - A
Guide to the Theory of
NP-completeness. Freeman, 1979.

[3] Holland J. Adaptation in Natural and
Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

Post-publication notes:

ArrayMiner is also available as optional add-
on to GeneSpring by Silicon Genetics, at
http://www.sigenetics.com/cgi/SiG.cgi/Produc
ts/GeneSpring/Programs/arrayminer.smf.

http://www.optimaldesign.com/
http://www.sigenetics.com/cgi/SiG.cgi/Products/GeneSpring/Programs/arrayminer.smf

