
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The following paper discusses the performance of ArrayMiner by Optimal Design as 
compared with the standard k-Means procedure. The paper was published in Proceedings of 
the 2001 International Conference on Mathematics and Engineering Techniques in Medicine 
and Biological Sciences (METMBS'2001), Las Vegas, Nevada, USA, June 25-28, 2001. 
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Abstract - With the (near-)availability of 
complete sequences of human and other 
genomes, research effort is turning from 
obtaining the sequence itself towards 
determining the biological function of the 
genes within the sequence. One approach, 
made practically feasible with the advent of 
DNA microarray technology, consists of 
clustering of genes into groups of coexpressed 
genes, i.e. genes exhibiting similar behavior in 
some circumstances. Among the various 
methods used for identification of groups of 
coexpressed genes, k-Means is one of the most 
popular. However, we show here that k-Means 
is a highly unreliable method of clustering, 
yielding high-quality solutions with low 
probability. We then present the ArrayMiner 
software based on Genetic Algorithms, which 
addresses the drawback, supplying 
high-quality solutions in short time with very 
high reliability. 
 
1. Clustering of Expression Profiles 
With the (near-)availability of complete 
sequences of human and other genomes such 
as Drosophila and Arabidopsis, genomics has 
produced a significant wealth of sequence 
data, and the stage has been set for the next 
task, namely identifying the biological 
function of the genes within those sequences. 
Indeed, only this latter knowledge will enable 
researchers to establish correspondences 
between diseases and the genome, paving the 
route to new medication. A major difficulty 
lies with the fact that the detailed phenomena 
taking place within organisms are not fully 

understood and many probably remain to be 
discovered. Identifying the phenomena and the 
genes involved, together with the ways in 
which the genes interact, constitutes the major 
challenge of “post-sequencing” genetics. 
One approach to achieve this consists in 
identification of groups of coexpressed genes, 
i.e. groups of genes that behave similarly in 
some conditions. The rationale behind this 
approach is that similarly behaving genes 
probably participate together in some 
phenomenon or have similar functions –
 identifying such groups may thus help in 
identifying the phenomenon, discovering 
previously unknown phenomena, or assigning 
previously unknown functions to genes. As an 
additional benefit, clustering gene expression 
data into groups reduces the unmanageable 
volume of data into data sets that can be more 
easily handled by biologists. 
In this approach, each gene (or ORF) is 
represented by an expression profile, i.e. a 
series of numerical values of its activity. The 
profile of a gene may correspond to a set of 
readings of the gene’s activity under various 
conditions, or be a time-series of the gene’s 
activity after some event. The aim of 
clustering of the expression profiles being to 
decide which genes exhibit similar behaviors 
(i.e., are coexpressed), a measure of similarity 
between profiles must be defined. Several can 
be found in the literature, including the 
Euclidean distance, the correlation, and the 
Pearson coefficient, this last measure being 
widely used for the time-series profiles, as it 
measures the similarity of the shapes, rather 



than the absolute values of the measurements 
of the two profiles. 
 
2. The k-Means Technique 
2.1 Approach 

One of the most popular clustering techniques 
is k-Means, to the extent that it is hardly 
possible to find gene expression clustering 
software that would not offer k-Means as a 
method of identification of groups of 
coexpressed genes. Given the user-supplied 
parameter of the number of groups, k-Means 
finds groups of genes such that within any 
group, all profiles in that group are closer to 
the average profile (centroid) of that group 
than to the average of any other group. 

Intuitively at least then, the solution supplied 
by k-Means indeed groups together genes with 
the most similar behaviors. 
Mathematically, k-Means is usually presented 
as supplying clusters with minimal total 
variance, i.e., a method that minimizes the sum 
of squares of distances between the data points 
and their associated centroids. The criterion of 
minimal total variance yields the most 
“compact” clusters, an intuitively appealing 
criterion of quality of a solution. However, as 
we show below, there is a “grain of salt” to 
this, as k-Means is only a very locally optimal 
technique. 
 

2.2 Operation 

K-Means proceeds from an initial position of 
the given number of group centroids, by 
iterative assignment of the profiles to their 
closest centroid followed by adjustment of the 
centroids’ positions into the centers of the 
resulting groups. The process is illustrated in 
Figure 1 on a simple example with 11 data 
points in three groups.  
The algorithm terminates when a stable 
configuration is reached, i.e. when the 
partition of the profiles into groups does not 
change anymore. The process usually 
converges into a stable solution in a low 
number of iterations, making k-Means a very 
fast algorithm. 
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Figure 1: Successive stages of the k-Means algorithm 

2.3 The Caveat 

The solution obtained in Figure 1 is at least 
intuitively the “right” one, as the three groups 
are well separated and of low variance (the 
profiles within each group are close to one 
another). However, recall that k-Means 
terminates as soon as a stable configuration is 
reached. Depending on the initial positions of 
the centroids, this may lead to very different 
solutions being supplied by the algorithm. 
Indeed, for the twelve profiles in Figure 1, 
there are at least seven different k-Means 
solutions in three groups, depicted in Figure 
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Figure 2: Seven k-Means partitions of the data in Figure 1 
hey have been obtained by starting the 
ithm with different initial positions of the 
oids. The last of the seven solutions is 
cially noteworthy, as the members of the 
tively correct group C of Figure 1 are 
rsed over three different groups there. 

rly, k-Means can supply solutions of wide 
sity. Some, like the one in Figure 1, are 
tively appealing, while others, like the last 
n Figure 2, are much less so. 
sensitivity of k-Means to the choice of the 
l positions of the centroids is a well 
n problem. Consequently, in order to 

 the chances of landing in a suboptimal 
ion, several techniques have been 
osed for selecting the “best” initial 
ions of the centroids, with the aim of 
cing a high-quality solution at the end of 
-Means run. However, that approach can 

 be successful if the centroids are initially 
d near the centers of the clusters that are 
own at the start of the procedure, and 
 an a priori determination of the positions 
e clusters is difficult. 
n that the high speed of the algorithm 
s for numerous restarts within a 
nable time, the standard solution to this 

at is running k-Means several times from 
rent initial positions of the centroids and 
ning the best clustering found, i.e., the one 
 the smallest total variance. The various 
l positions are typically selected at 

om. 
osing k-Means is a robust technique 
lying a reasonably small number of 

different solutions, that approach should yield 
the best clustering in an acceptably short 
computation time. In order to assess whether 
such a way of proceeding with k-Means is 
practically feasible, we have considered the set 
of data depicted in Figure 3. This data set is 
again easily handled visually, but it is closer in 
size to the amounts of expression profile data 
usually processed in real world. The example 
was generated by a juxtaposition of 21 
gaussian distributions, a property easily 
verified with the bare eye. Consequently, we 
looked at the number of different solutions in 
21 clusters that k-Means could supply on those 
data. 

                                          
e radii of the circles in Figure 2 are 
rtional to the standard deviation. 

In order to determine the number of different 
k-Means solutions, one would in principle be 
required to start the algorithm from every 
possible initial configuration of the centroids. 
However, there are infinitely many of them, so 
we restricted the experiment, considering only 
the configurations where each centroid is 
initially placed in one of the data points. 
Unfortunately, that restriction still leaves too 
many initial configurations to be tested, as 
there are more than (2500-21)21 / 21! > 1051 
ways of selecting 21 items among the 2500 in 
the figure. We have therefore generated 10000 
initial configurations by placing the centroids 
in data points selected at random (without 
replacement). The outcome of the test was 
quite spectacular, since starting from the 
10000 initial positions of the centroids, 
k-Means supplied a staggering 9874 different 
solutions. The solutions are not reproduced 
here, for obvious space reasons. However, 
they can be accessed at the URL given below. 
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problem. The parts are combined together to 
produce novel complete solutions of high 
quality with high probability. Starting with an 
initial pool of solutions generated largely at 
random, a GA iteratively improves the pool by 
combining the best members of the pool, 
yielding solutions of increasing quality. 
The originality of the GGA is that it promotes 
groups of items during inheritance. Since the 
GGA’s groups naturally correspond to the 
clusters of expression profiles, this proves to 
be an extremely effective technique for finding 
high-quality clusters in the expression profile 
data. Indeed, a good clustering of the data 
necessarily consists of at least some clusters 
fitting well the structure of the data, i.e., 
Figure 3: A more realistic 2D data set 
e experiment illustrates that k-Means is very 
r from being a robust technique. Given that 
ry few of the currently available software 
uld run the procedure thousands of times, 

is implies that the solutions obtained with 
ost current software using k-Means have in 
ct little chance of being of high quality. 

 The ArrayMiner Software 
1 The Technique Used 

e popularity of the k-Means method is 
tness to the fact that the minimal variance 
iterion for measuring clustering quality is 
dely adopted. Consequently, the current 
lease of the ArrayMiner software follows 
at criterion, i.e., it searches for solutions of 
inimal total variance in a given number of 
sters. However, unlike most other currently 

ailable methods, ArrayMiner does not rely 
 k-Means in its search for high-quality 
lutions. Rather, it is based on the technique 
 Grouping Genetic Algorithms [1]. Obvious 
ace constraints do not allow us to explain 
re the details of the Grouping Genetic 
gorithm (GGA), the interested reader should 
fer to the Falkenauer book. Nevertheless, let 
 at least explain the rationale behind the 
ethod. 
netic Algorithms (GAs) [3] are an 
timization technique inspired by the 
ocesses of evolution of species in Nature. A 

 proceeds by promoting high-quality parts 
 solutions in a process of inheritance when 
eating new solutions to the optimization 

clusters of low variance, well separated from 
the other data points. Promoting such clusters 
during inheritance thus improves the overall fit 
of the clusters to the data, yielding solution of 
low total variance. 
 
3.2 Why is ArrayMiner Different 

ArrayMiner thus stands out in comparison 
with other currently available software for 
expression profile clustering in that it uses a 
well-defined optimization process (the GGA) 
in search of the best possible clustering 
solution, using a well-defined measure of 
quality (the total variance of the clusters, being 
minimized). In contrast, most other software 
uses a heuristic one-shot procedure (k-Means 
or other) in hopes of arriving at a good 
solution to the problem. If the heuristic fails 
and produces a mediocre solution, then that’s 
what the user will have to do with. That this 
probably happens frequently is nicely 
illustrated by the fact that none of the currently 
available software we know of dares to report 
a measure of quality of the clusters they 
supply, such as the actual value of the total 
variance of the clusters. 
 
3.3 Why does it Matter in Practice 

The use of a sophisticated optimization 
algorithm in ArrayMiner is all-important. 
Indeed, it can be shown that finding a set of 
clusters with the lowest total variance is in fact 
a very difficult problem (it is NP-hard, [2]), 
which implies that fast one-shot heuristics 
simply cannot be expected to perform well. As 



a result, they will supply suboptimal solutions 
with high probability. Indeed, as we have 
shown above, k-Means is extremely prone to 
performing below expectations. 
For the biologist who runs the clustering 
software, the quality of the clustering is of 
significant importance, as he or she interprets 
the clusters as associations of genes that 
behave similarly. Since the detailed 
phenomena underlying the observed 
expression profiles are often yet to be 
discovered, the fact that some genes are 
associated while others are not will typically 
prompt the biologist to examine hypotheses on 
why the genes associated in a cluster would 
behave similarly, and differently from the 
genes outside the cluster. 
Suppose now that the clusters supplied to the 
biologist are of poor quality, such as in the last 
part of Figure 2. Considering such a solution 
will lead the biologist into a painful 
examination (and, hopefully, rejection) of 
hypotheses purportedly explaining the bogus 
associations suggested by the ill-formed 
clusters in that solution. Indeed, the genes in 
those clusters do not in fact behave similarly, 
they have just been mistakenly associated due 
to the poor performance of the clustering 
algorithm. Conversely, a poor solution 
obviously means that better ones are not 
supplied. It thus prevents the biologist from 
examining the probably more useful 
associations, such as the ones in the first part 
of Figure 1. This may cause the biologist to 
miss important biological phenomena, a 
potentially serious hindrance on their research. 
 
3.4 ArrayMiner’s Performance 
3.4.1 Solution Quality and Speed 

In order to be of real use to biologists, the 
solutions supplied by a clustering algorithm 
must be of high quality, which is why 
ArrayMiner exploits an algorithm performing 
a true optimization of the clustering. However, 
in order to be practically usable, an algorithm 
must also be reasonably fast. On difficult 
problems like the one discussed here, the 
challenge is to design an algorithm supplying 
high-quality solutions on short notice. 
In this respect, the GGA incorporated in 
ArrayMiner fares very well. As an illustration, 
consider the data in Figure 3. Running the bare 

k-Means procedure 10000 times took about 35 
minutes on a PIII-800 machine. The best 
among those 10000 solutions was found just 
once in those 10000 runs of k-Means, 
illustrating the high instability of the k-Means 
algorithm. Yet ArrayMiner’s GGA found that 
same solution in just 4 minutes on average 
(see below). 

3.4.2 Reliability 

If the biologist is to have any confidence in the 
clusters of genes supplied by a clustering tool, 
the tool must consistently deliver high-quality 
solutions. Indeed, if it does not, then any given 
solution supplied by the tool can be considered 
as a largely random pick among numerous 
different solutions. In that case, the biologist 
would have good reasons to question why the 
one proposed should be worthy of extensive 
scrutiny, rather than any other. 
As we have seen above, the bare k-Means 
algorithm fares extremely poorly in this 
respect: it found the best solution to the simple 
problem in Figure 3 only once in 10000 trials. 
In other words, even on that simple example, 
the bare k-Means is about ten thousands times 
likelier to supply the wrong clusters than to 
supply the correct ones. 
In order to assess the reliability of 
ArrayMiner, we have run it 20 times on the 
example, starting with different initial 
conditions. In those 20 runs, ArrayMiner 
found the best of the 10000-trials solutions 
every time. Finding that one solution2 on 
numerous runs started from different initial 
conditions suggests that it is probably the 
globally optimal solution to the problem, yet 
ArrayMiner was able to find it in very 
reasonable time (row RND2500 in Table 1). 
The two-dimensional example in Figure 3 is 
actually quite easy. Testing ArrayMiner on 
real gene expression data further demonstrates 
its advantage over simple k-Means. The 
following additional data sets, all clustered 
into 10 groups, have their corresponding 
entries in Table 1: 
• YDSHIFT: 1446 profiles of the yeast 

diauxic shift (7 time points) 

                                                 
2 Equality based on identical cluster memberships, 
rather than a mere equality of total variance. 



• RAT: the LNP/NINDS/NIH
profiles of rat nervo
development (9 time points
the demo version of 
software by Silicon Genetics 

• YCELL: the “ACGCGT in 
of 507 profiles (16 time p
yeast cell cycle available 
version of GeneSpring 
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10kTime: Time to perform 10
10000 trials; 10kBest: Total v
successive runs of ArrayMiner
trials of k-Means; Best: Total
over 20 successive runs of A
800/Win2000. 
Table 1: ArrayMiner Performance 

00 k-Means Trials ArrayMiner 
10kNbrSols 10kBest TimeTo10k Best TimeToBest 

9874 2751149 4 2751149 4 
9650 21.4911 2 21.4875 8 
9982 1.8527 0.04 1.8343 0.09 

10000 32.3130 6 32.2871 17 

000 trials of k-Means; 10kNbrSols: Number of distinct solutions in 
ariance of the best k-Means trial; TimeTo10k: Average time over 20 
 to find a solution as good as or better than the best found in 10000 
 variance of ArrayMiner’s best solution; TimeToBest: Average time 
rrayMiner to find the best solution. All times in minutes on a PIII-
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that are in fact not coexpressed on the one 
hand, and miss important groups of 
coexpressed genes on the other. We have then 
presented the ArrayMiner software that uses a 
sophisticated optimization technique in 
searching for the best possible clusters. 
Experimental results show that ArrayMiner 
supplies excellent solutions with very high 
reliability, and it does so within reasonably 
short execution times. 
Further information on ArrayMiner is 
available at http://www.optimaldesign.com. 
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Post-publication notes: 
 
ArrayMiner is also available as optional add-
on to GeneSpring by Silicon Genetics, at 
http://www.sigenetics.com/cgi/SiG.cgi/Produc
ts/GeneSpring/Programs/arrayminer.smf. 
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