
Introducing 
 

ArrayMiner2 by Optimal Design 
 

A New Class of Algorithm for Gene Expression Clustering 
 

“How many clusters are there, really?” 
“What about outliers in my data?” 

 
 
A limitation of current clustering tools 
 
The objective in clustering of gene expression 
data is to identify clusters of coexpressed 
genes, such that genes in one cluster relate to a 
common biological phenomenon, while genes 
in different clusters relate to different 
phenomena. 
The classic way of doing this is to follow the 
proximity principle: cluster together genes 
which expression profiles are closest to each 
other, the distance between any two profiles 
being measured by some distance measure, e.g. 
Euclidean distance, correlation, or Pearson 
Coefficient. The proximity principle expresses 
the intuitive notion that the closer (more 
similar) two expression profiles are, the likelier 
it is that they reflect the same biological 
phenomenon. Most current clustering algo-
rithms, such as hierarchical dendrograms, k-
Means, SOMs, VxInsight, etc. follow the 
proximity principle. 
An obvious consequence of the proximity 
principle is that each gene is typically 
supposed to be classified into the cluster to 
which it is closest in terms of distance to some 
representative of the cluster (average profile, 
median profile, etc.). For instance, both 
k-Means and the most common dendrogram 
algorithms construct clusters by repeatedly 

assigning genes to the closest average profile 
of extant clusters. 
Intuitive as it may seem, the proximity 
principle nevertheless rests on a controversial 
assumption: when deciding the membership of 
any given profile, assigning it to the closest 
cluster ignores the fact that genes in different 
clusters may well have different spreads 
(variances) of activity values. 
In order to illustrate why the assumption of 
proximity principle is indeed controversial, 
consider the following example. The 
expression levels of a number of genes are 
measured under two conditions, 1 and 2. The 
genes belong to two functional groups. Those 
in the first group are up-regulated in the first 
condition, but do not show a common 
tendency in the second condition, their 
expression levels varying significantly around 
zero. The genes in the second group are down-
regulated in the second condition, but do not 
show a common tendency in the first, their 
expression levels varying significantly around 
zero. Since there are only two conditions, such 
results are conveniently represented in a two-
dimensional drawing, as in Figure 1 below, 
where the first group is drawn in red circles 
and the second in blue rectangles. 

 

 
Figure 1: Two groups of genes of different variances 



The clusters corresponding to the two 
functional groups of genes are well separated 
and should not be difficult to identify. 
However, the clusters do not comply with the 
proximity principle: Figure 2 reveals that the 

profiles of a number of genes in the blue 
cluster are in fact closer to the average 
(centroid) of the red cluster. This is because 
the simple criterion  of distance disregards the 
variance (spread) of the clusters. 

 
Figure 2: The correct clustering violates the proximity principle 

 
As the example in Figure 2 shows, a clustering 
algorithm that follows the proximity principle 
and assigns genes to the closest cluster 
average, will miss the structure of the two 

functional groups depicted in the figures. For 
instance, the best clustering that could be 
obtained by the k-Means algorithm on these 
data is shown in Figure 3. 

  

The flawed clustering in Figure 3 is due to the 
fact that the variances of the expression levels 
in the two functional groups are different, 
while the k-Means algorithm implicitly 
supposes that they are equal. In other words, k-
Means is an inadequate method for clustering 
such data, and the same holds for many other 
methods relying on the proximity principle. 
The important point is that since the genes in 
the two groups in Figure 1 belong to different 
functional groups, their activity is regulated via 
different pathways, involving different 

biological phenomena. There is thus no reason 
why the variances of the activity levels should 
be equal in the two groups. On the contrary, 
most real-world data can be expected to 
exhibit different variances of activity levels in 
different functional groups. Consequently, 
since clustering by the proximity principle is 
inadequate in these conditions, one must conc-
lude that most current clustering methods are 
in fact ill-suited for many real-world data sets. 

 
Figure 3: Best k-Means clustering of the above data 

 



Accounting for cluster variance 
 
ArrayMiner2 introduces a unique clustering 
algorithm that takes cluster variance into 
account. This turns out to be crucial. 
The fundamental idea behind ArrayMiner2’s 
approach is to realize that the ultimate aim in 
gene expression clustering is to identify 
distinct functional groups of genes, each 
reflecting different biological phenomena that 
give raise to the observed activity levels. Since 
they stem from different phenomena, each with 
its own dynamic, the observed expression level 
values in each cluster must therefore be 
expected to follow a distribution different from 
other clusters. The aim of the clustering thus 
becomes to identify the distribution for each 
cluster, such that the resulting statistical model 
of the data matches the observed data. 
Since numerous random factors are involved in 
gene activation and the measurement process, 
ArrayMiner2 assumes that the Law of Large 
Numbers of statistics applies to the distribution 
of the observed activity levels. The activity 
level values are therefore modeled by Gaussian 
distributions, one for each condition (experim-
ent) and each cluster. So for instance, 
identifying ten clusters in a data set over four 
conditions means finding the mean and 
variance of 40 (10x4) Gaussians that best fit 
the observed data. 
 
The Algorithm 
 
The standard way of fitting Gaussians to a set 
of data is to apply the Expectation Maximi-
zation (EM) algorithm. Although EM is a well 
known algorithm, it has two serious draw-
backs: its convergence is quite slow, and it is 
highly sensitive to initialization. While slow 
convergence could be made for by faster 
computers, the latter drawback means that 
EM’s results are unreliable, often resulting in 
clusters that actually do not match the data at 
hand. 
ArrayMiner2 elegantly solves both of EM’s 
drawbacks by exploiting Optimal Design’s 
proprietary technology of Grouping Genetic 
Algorithm (GGA). The GGA’s power, well 
proven over the last decade, not only allows 
ArrayMiner2 to identify the best possible 
clusters with unprecedented reliability, it also 
enables it to exploit advanced programming 
“tricks” to significantly speed up the process. 
 
Outliers 
 
Outliers are genes with expression patterns that 
do not fit any of the clusters – simply put, such 
genes “do not jibe” with the other genes in the 

data set. The unique patterns may have any of 
a number of possible origins, including a truly 
unique behavior of the genes, sample 
contamination, laboratory errors, data 
processing errors, etc. Whatever the origin of 
the observed unique expression patterns, it is 
important to identify such outliers, since they 
may represent the interesting finding in the 
data set, or may signal problems that need to 
be addressed. 
Most current clustering tools are unable to 
handle outliers adequately. Not only are 
outliers typically not detected at all, they often 
perturb the algorithm as it tries to include them 
into clusters with the other genes at any cost. 
ArrayMiner2 detects outliers in the following 
elegant way. Since by definition an outlier’s 
expression stems from unknown phenomena, it 
can be really anything. ArrayMiner2 therefore 
postulates the existence of an additional 
uniform probability distribution. In other 
words, ArrayMiner2 models “outlier noise” as 
an additional uniform distribution that 
“competes” with the Gaussians. 
On many data sets, all genes are found to 
match a set of Gaussians, so ArrayMiner2 
reports the corresponding clusters and no 
outliers. On other data, some expression 
profiles are found to more probably belong to 
the uniform “noise” distribution than to any of 
the Gaussians, and those genes are thus labeled 
as outliers. 
 
How many clusters? 
 
One of the most frustrating aspects of many 
current clustering tools is the a priori choice of 
the number of clusters. The parameter must be 
supplied for the algorithm to function, but the 
biologist rarely knows how many clusters there 
are. Indeed, he or she typically performs the 
clustering with the aim of discovering the 
functional groups of genes including their 
number, so specifying it before the functional 
groups are established is extremely difficult. 
The choice of the number of clusters would not 
be a problem if the structure of the clusters was 
robust. With a robust clustering, increasing the 
number of clusters would simply reveal more 
detail in the otherwise stable clusters, enabling 
the biologist to choose the clustering with the 
desired level of detail. 
Unfortunately, the limited capacity of most 
current clustering methods to identify 
expression profile clusters of different varia-
nces has a very annoying consequence, 
routinely observed by users of these methods: 
the purported structure of the data reported by 
the method often varies widely with the 
number of clusters. Instead of refining the 



clusters by increasing their number, one often 
gets completely different clusters. Not only do 
such results directly contradict the intuitive 
notion of some kind of hierarchy in the 
underlying physiological phenomena, they also 
make the choice of the adequate number of 
clusters all but impossible. 
Some clustering tools brush aside this all-
important issue by offering “measures of 
quality” of a clustering, suggesting that the 
number of clusters that scores best at that 
criterion is the “right” one. But biologists are 
usually unwilling to blindly follow such 
artificial measures, and with good reason: all 
these measures rest on some evaluation of 
“information gain” offered by the clustering, 
but the only real judge of the value of the 
information are the biologists themselves. 
Indeed, the question of the “right” number of 
clusters really boils down to “how much detail 
do you need?” Only the user, not the algor-
ithm, can know the answer to that question. 
ArrayMiner2 does ask for the desired number 
of clusters, because the biologist needs to 
specify the level of detail he or she requires. 
However, unlike most other current tools, the 
clusters ArrayMiner2 supplies are stable: their 
structure is consistent across a wide range of 

the parameter. ArrayMiner2 thus represents the 
ideal clustering tool: with a low number of 
clusters, the “big picture” is supplied, and with 
a high number of clusters, the detailed struc-
ture is given. Most importantly, the detailed 
view is consistent with the “big picture”, since 
the detailed clusters are readily identified as 
subsets of the clusters in the “big picture”. This 
desirable property is illustrated in the 
following examples. 
In order to illustrate visually the robustness of 
ArrayMiner2’s algorithm and stability of the 
clusters it supplies, the following two figures 
show a simple two-dimensional example. The 
example features three groups of data points, 
representing three functional groups of genes. 
In the left part of, the data has been clustered 
with the classic k-Means algorithm into two, 
three and four clusters, respectively. The 
resulting classifications are shown in the three 
boxes A, B and C. On the right of the figure, 
those three clusterings, as well as k-Means 
clusterings into five through nine clusters, are 
shown in ArrayMiner’2 Classification 
Compare facility. That view reveals the 
correspondences among clusters obtained by 
clustering into different numbers of clusters. 
 

 

 

 
Figure 4: K-Means clustering of a simple data set 

As the contents of the three boxes A, B and C 
in Figure 4 shows, k-Means completely misses 
the structure of the data. As explained above, 
this is due to the fact that the three groups have 
different variances, a property that k-Means is 
unable to cope with. This failure leads to 
extremely unstable results – note in particular 

how the data points in the middle group are 
first split in two, then clustered together with 
the points on the left, and then clustered with 
the points on the right. Furthermore, as the 
Classification Compare image reveals, this 
does not get any better when the number of 
clusters is increased. 



The conclusion to be drawn from Figure 4 is 
that classifications obtained with k-Means can 
vary wildly with different numbers of clusters. 
Identifying any stable structure in a series of k-
Means clusterings is often hazardous, at best. 
Worse, the clusters are highly inconsistent 
across the classifications, which means that the 
purported functional groups detected by the 
clustering differ significantly from one 
classification to another: large numbers of 
genes are associated in some classifications 
and dissociated in others. So which one is the 

“right” classification, given that it is typically 
not a priori known how many clusters there 
are? Few, if any of them. 
ArrayMiner2’s results are strikingly different. 
Since its algorithm takes cluster variance into 
account, it is substantially better in detecting 
the true structure of the data. And since the 
structure remains the same whatever the level 
of detail, the clusters supplied by ArrayMiner2 
are stable as well. This is illustrated in Figure 
5, where the data from Figure 4 were clustered 
into two through nine clusters. 

 

 
Figure 5: The above data clustered with ArrayMiner2 

As in Figure 4, the left part of Figure 5 shows 
the clusters in the first three classifications of 
the data, into two, three and four clusters 
respectively. When clustering into two clusters 
(box A in Figure 5), ArrayMiner2 detected the 
two large groups of data points as the most 
salient feature (the “big picture”) in the data. 
The middle group was correctly identified as 
not being part of either of the two, but since 
only two clusters were requested, those data 
points were classified as outliers. When 
clustering into three clusters (box B), the three 
groups were correctly identified and no 
outliers were reported. When clustering into 
four clusters (box C), a small number of highly 
similar data points were detected inside the 
large red group and classified as an extra 
cluster. These three classifications are also 
depicted in the right part of Figure 5, together 
with classifications into four through nine 
clusters. The diagram confirms the stability of 
the clusters supplied by ArrayMiner2, as the 
structure of the data is preserved across all 
classifications. 

Although the successive classifications depict-
ed in the right part of Figure 5 show clusters so 
stable that one could think that ArrayMiner2 
performs a hierarchical clustering (dendrog-
ram), it is important to note that that is not the 
case: ArrayMiner performs a nonhierarchical 
clustering, i.e., each of the classifications was 
computed completely separately from the 
others. Indeed, one could compute the classifi-
cation in two clusters and then in nine, without 
computing the others. So we may ask the same 
question as above, namely what is the “right” 
classification among those in Figure 5? Most 
of them in fact: only the level of detail of the 
view changes. The biologists can at last safely 
choose the level of detail that will help them 
discover the interesting clusters of genes. 
 
Real-world data 
 
The examples above illustrate the advantages 
of ArrayMiner2 in an easy-to-see manner, 
using two-dimensional examples. Real-world 
data are in most cases more complex, featuring 



a higher number of dimensions (conditions or 
experiments, or time points). It turns out that 
with increasing number of dimensions, 
clustering becomes even more difficult for 
methods based on the proximity principle. The 
reason is simple: there are as many variances 
per cluster as there are dimensions, so a higher 
number of dimensions means more trouble for 
methods that disregard cluster variance. 
This is illustrated in Figure 6 showing the 
yeast cell cycle data set “ACGCGT in all 
ORFs” (507 profiles, 16 time points), available 
in the demo version of GeneSpring. For a 
fair comparison, the data were clustered using 
k-Means clustering of a leading expression 

analysis software, into four through eleven 
clusters. As can easily be seen, no clear 
structure emerges: as the number of clusters in 
the k-Means classifications changes from four 
to eleven, the purported associations among 
genes change widely as well, and identifying 
the “right” number of clusters is extremely 
difficult. Yet choosing any of the classifi-
cations invalidates nearly all of the others, 
because they match each other so poorly. The 
natural question of whether any of the eight k-
Means classifications captures the actual 
structure of the data becomes quite up to the 
point in face of these results. 

 

 
Figure 6: Comparison of k-Means classifications of Yeast data 

 
The same data set was then clustered with 
ArrayMiner2, using the same distance measure 
(Pearson Coefficient) as in Figure 6. The 
resulting classifications are again compared 

with ArrayMiner’s Classification Compare 
facility, in Figure 7. The high stability of the 
resulting clusters is clearly visible in the 
figure. 

 

 
Figure 7: Comparison of ArrayMiner2 classifications of the data in Figure 6 



 
ArrayMiner2 vs. Hierarchical Clustering 
 
The notion of structure that should stay stable 
whatever the number of clusters is intuitively a 
strong one. So much so in fact, that 
“clustering” tools based on that notion are in 
widespread use. These hierarchical clustering 
tools explicitly enforce the concept of stable 
structure by constructing a tree of genes (a 
dendrogram), such that the “clusters” in the 
upper levels of the tree are reunions of 
“clusters” in the levels below. The user obtains 
clusters of genes by selecting disjoint subtrees 
in the dendrogram (not necessarily all in the 
same level of the tree). 
While such a bottom-up construction does lead 
to “clusters” that are stable by definition of the 
dendrogram, the approach has a serious 
drawback. Since the dendrogram is constructed 
from bottom up, the whole tree is strongly 
contingent on associations of genes in the 
lowest levels. Unfortunately, the “clusters” in 
the lowest levels are those that are constructed 
with very little if any regard to the global 
structure of the data. In particular, the variance 
of functional groups in the data cannot be 
taken into account at that stage of the 
construction of the dendrogram. As a result, 
the upper levels of the dendrogram often miss 
the true structure of the data. 
Although ArrayMiner2’s clusters show a near 
tree-like stability, it is not a result of a 
hierarchical construction. Instead of recursi-
vely uniting “clusters” within a dendrogram, 
ArrayMiner2 performs a rigorous non-hierar-
chical clustering, with the level of detail 
depending on the requested number of clusters. 
The fact that tree-like comparisons of the 
resulting clusters can be subsequently obtain-
ed, as in Figure 5 and Figure 7, is simply due 

to the fact that a stable structure in the data is 
correctly identified regardless of the requested 
number of clusters. 
 
Conclusions 
 
ArrayMiner2 constitutes a significant advance 
in gene expression clustering. Its capacity to 
identify the structure of many gene expression 
data sets significantly better than methods 
based on the proximity principle yields a non-
hierarchical clustering method that supplies 
remarkably stable clusters when the requested 
number of clusters changes. As a result, the 
nearly-intractable problem of the “right” 
number of clusters all but disappears: 
ArrayMiner2’s clusters are highly reliable 
whatever their number in a classification. 
Furthermore, ArrayMiner2 solves the problem 
of outliers that perturbs most other clustering 
methods. Outliers are detected as not 
belonging to any cluster, allowing the 
biologists to spot these unique patterns, leading 
them to discovery of previously unsuspected 
phenomena or data collection problems. 
 
Completed by a unique graphical user interface 
featuring clusters shown as 3D translucent 
solids viewable from any angle by a simple 
mouse drag, the innovative Classification 
Compare facility for visually easy comparison 
of various classifications, and many other 
intuitive viewing tools, ArrayMiner2 offers an 
unequaled power and user experience in gene 
expression analysis. 
 
For availability and/or to request a fully 
functional demo of ArrayMiner, visit our 
website at http://www.optimaldesign.com. 
 

 

http://www.optimaldesign.com
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