
Introducing

ArrayMiner2 by Optimal Design

A New Class of Algorithm for Gene Expression Clustering

“How many clusters are there, really?”
“What about outliers in my data?”

A limitation of current clustering tools

The objective in clustering of gene expression
data is to identify clusters of coexpressed
genes, such that genes in one cluster relate to a
common biological phenomenon, while genes
in different clusters relate to different
phenomena.
The classic way of doing this is to follow the
proximity principle: cluster together genes
which expression profiles are closest to each
other, the distance between any two profiles
being measured by some distance measure, e.g.
Euclidean distance, correlation, or Pearson
Coefficient. The proximity principle expresses
the intuitive notion that the closer (more
similar) two expression profiles are, the likelier
it is that they reflect the same biological
phenomenon. Most current clustering algo-
rithms, such as hierarchical dendrograms, k-
Means, SOMs, VxInsight, etc. follow the
proximity principle.
An obvious consequence of the proximity
principle is that each gene is typically
supposed to be classified into the cluster to
which it is closest in terms of distance to some
representative of the cluster (average profile,
median profile, etc.). For instance, both
k-Means and the most common dendrogram
algorithms construct clusters by repeatedly

assigning genes to the closest average profile
of extant clusters.
Intuitive as it may seem, the proximity
principle nevertheless rests on a controversial
assumption: when deciding the membership of
any given profile, assigning it to the closest
cluster ignores the fact that genes in different
clusters may well have different spreads
(variances) of activity values.
In order to illustrate why the assumption of
proximity principle is indeed controversial,
consider the following example. The
expression levels of a number of genes are
measured under two conditions, 1 and 2. The
genes belong to two functional groups. Those
in the first group are up-regulated in the first
condition, but do not show a common
tendency in the second condition, their
expression levels varying significantly around
zero. The genes in the second group are down-
regulated in the second condition, but do not
show a common tendency in the first, their
expression levels varying significantly around
zero. Since there are only two conditions, such
results are conveniently represented in a two-
dimensional drawing, as in Figure 1 below,
where the first group is drawn in red circles
and the second in blue rectangles.

Figure 1: Two groups of genes of different variances

The clusters corresponding to the two
functional groups of genes are well separated
and should not be difficult to identify.
However, the clusters do not comply with the
proximity principle: Figure 2 reveals that the

profiles of a number of genes in the blue
cluster are in fact closer to the average
(centroid) of the red cluster. This is because
the simple criterion of distance disregards the
variance (spread) of the clusters.

Figure 2: The correct clustering violates the proximity principle

As the example in Figure 2 shows, a clustering
algorithm that follows the proximity principle
and assigns genes to the closest cluster
average, will miss the structure of the two

functional groups depicted in the figures. For
instance, the best clustering that could be
obtained by the k-Means algorithm on these
data is shown in Figure 3.

The flawed clustering in Figure 3 is due to the
fact that the variances of the expression levels
in the two functional groups are different,
while the k-Means algorithm implicitly
supposes that they are equal. In other words, k-
Means is an inadequate method for clustering
such data, and the same holds for many other
methods relying on the proximity principle.
The important point is that since the genes in
the two groups in Figure 1 belong to different
functional groups, their activity is regulated via
different pathways, involving different

biological phenomena. There is thus no reason
why the variances of the activity levels should
be equal in the two groups. On the contrary,
most real-world data can be expected to
exhibit different variances of activity levels in
different functional groups. Consequently,
since clustering by the proximity principle is
inadequate in these conditions, one must conc-
lude that most current clustering methods are
in fact ill-suited for many real-world data sets.

Figure 3: Best k-Means clustering of the above data

Accounting for cluster variance

ArrayMiner2 introduces a unique clustering
algorithm that takes cluster variance into
account. This turns out to be crucial.
The fundamental idea behind ArrayMiner2’s
approach is to realize that the ultimate aim in
gene expression clustering is to identify
distinct functional groups of genes, each
reflecting different biological phenomena that
give raise to the observed activity levels. Since
they stem from different phenomena, each with
its own dynamic, the observed expression level
values in each cluster must therefore be
expected to follow a distribution different from
other clusters. The aim of the clustering thus
becomes to identify the distribution for each
cluster, such that the resulting statistical model
of the data matches the observed data.
Since numerous random factors are involved in
gene activation and the measurement process,
ArrayMiner2 assumes that the Law of Large
Numbers of statistics applies to the distribution
of the observed activity levels. The activity
level values are therefore modeled by Gaussian
distributions, one for each condition (experim-
ent) and each cluster. So for instance,
identifying ten clusters in a data set over four
conditions means finding the mean and
variance of 40 (10x4) Gaussians that best fit
the observed data.

The Algorithm

The standard way of fitting Gaussians to a set
of data is to apply the Expectation Maximi-
zation (EM) algorithm. Although EM is a well
known algorithm, it has two serious draw-
backs: its convergence is quite slow, and it is
highly sensitive to initialization. While slow
convergence could be made for by faster
computers, the latter drawback means that
EM’s results are unreliable, often resulting in
clusters that actually do not match the data at
hand.
ArrayMiner2 elegantly solves both of EM’s
drawbacks by exploiting Optimal Design’s
proprietary technology of Grouping Genetic
Algorithm (GGA). The GGA’s power, well
proven over the last decade, not only allows
ArrayMiner2 to identify the best possible
clusters with unprecedented reliability, it also
enables it to exploit advanced programming
“tricks” to significantly speed up the process.

Outliers

Outliers are genes with expression patterns that
do not fit any of the clusters – simply put, such
genes “do not jibe” with the other genes in the

data set. The unique patterns may have any of
a number of possible origins, including a truly
unique behavior of the genes, sample
contamination, laboratory errors, data
processing errors, etc. Whatever the origin of
the observed unique expression patterns, it is
important to identify such outliers, since they
may represent the interesting finding in the
data set, or may signal problems that need to
be addressed.
Most current clustering tools are unable to
handle outliers adequately. Not only are
outliers typically not detected at all, they often
perturb the algorithm as it tries to include them
into clusters with the other genes at any cost.
ArrayMiner2 detects outliers in the following
elegant way. Since by definition an outlier’s
expression stems from unknown phenomena, it
can be really anything. ArrayMiner2 therefore
postulates the existence of an additional
uniform probability distribution. In other
words, ArrayMiner2 models “outlier noise” as
an additional uniform distribution that
“competes” with the Gaussians.
On many data sets, all genes are found to
match a set of Gaussians, so ArrayMiner2
reports the corresponding clusters and no
outliers. On other data, some expression
profiles are found to more probably belong to
the uniform “noise” distribution than to any of
the Gaussians, and those genes are thus labeled
as outliers.

How many clusters?

One of the most frustrating aspects of many
current clustering tools is the a priori choice of
the number of clusters. The parameter must be
supplied for the algorithm to function, but the
biologist rarely knows how many clusters there
are. Indeed, he or she typically performs the
clustering with the aim of discovering the
functional groups of genes including their
number, so specifying it before the functional
groups are established is extremely difficult.
The choice of the number of clusters would not
be a problem if the structure of the clusters was
robust. With a robust clustering, increasing the
number of clusters would simply reveal more
detail in the otherwise stable clusters, enabling
the biologist to choose the clustering with the
desired level of detail.
Unfortunately, the limited capacity of most
current clustering methods to identify
expression profile clusters of different varia-
nces has a very annoying consequence,
routinely observed by users of these methods:
the purported structure of the data reported by
the method often varies widely with the
number of clusters. Instead of refining the

clusters by increasing their number, one often
gets completely different clusters. Not only do
such results directly contradict the intuitive
notion of some kind of hierarchy in the
underlying physiological phenomena, they also
make the choice of the adequate number of
clusters all but impossible.
Some clustering tools brush aside this all-
important issue by offering “measures of
quality” of a clustering, suggesting that the
number of clusters that scores best at that
criterion is the “right” one. But biologists are
usually unwilling to blindly follow such
artificial measures, and with good reason: all
these measures rest on some evaluation of
“information gain” offered by the clustering,
but the only real judge of the value of the
information are the biologists themselves.
Indeed, the question of the “right” number of
clusters really boils down to “how much detail
do you need?” Only the user, not the algor-
ithm, can know the answer to that question.
ArrayMiner2 does ask for the desired number
of clusters, because the biologist needs to
specify the level of detail he or she requires.
However, unlike most other current tools, the
clusters ArrayMiner2 supplies are stable: their
structure is consistent across a wide range of

the parameter. ArrayMiner2 thus represents the
ideal clustering tool: with a low number of
clusters, the “big picture” is supplied, and with
a high number of clusters, the detailed struc-
ture is given. Most importantly, the detailed
view is consistent with the “big picture”, since
the detailed clusters are readily identified as
subsets of the clusters in the “big picture”. This
desirable property is illustrated in the
following examples.
In order to illustrate visually the robustness of
ArrayMiner2’s algorithm and stability of the
clusters it supplies, the following two figures
show a simple two-dimensional example. The
example features three groups of data points,
representing three functional groups of genes.
In the left part of, the data has been clustered
with the classic k-Means algorithm into two,
three and four clusters, respectively. The
resulting classifications are shown in the three
boxes A, B and C. On the right of the figure,
those three clusterings, as well as k-Means
clusterings into five through nine clusters, are
shown in ArrayMiner’2 Classification
Compare facility. That view reveals the
correspondences among clusters obtained by
clustering into different numbers of clusters.

Figure 4: K-Means clustering of a simple data set

As the contents of the three boxes A, B and C
in Figure 4 shows, k-Means completely misses
the structure of the data. As explained above,
this is due to the fact that the three groups have
different variances, a property that k-Means is
unable to cope with. This failure leads to
extremely unstable results – note in particular

how the data points in the middle group are
first split in two, then clustered together with
the points on the left, and then clustered with
the points on the right. Furthermore, as the
Classification Compare image reveals, this
does not get any better when the number of
clusters is increased.

The conclusion to be drawn from Figure 4 is
that classifications obtained with k-Means can
vary wildly with different numbers of clusters.
Identifying any stable structure in a series of k-
Means clusterings is often hazardous, at best.
Worse, the clusters are highly inconsistent
across the classifications, which means that the
purported functional groups detected by the
clustering differ significantly from one
classification to another: large numbers of
genes are associated in some classifications
and dissociated in others. So which one is the

“right” classification, given that it is typically
not a priori known how many clusters there
are? Few, if any of them.
ArrayMiner2’s results are strikingly different.
Since its algorithm takes cluster variance into
account, it is substantially better in detecting
the true structure of the data. And since the
structure remains the same whatever the level
of detail, the clusters supplied by ArrayMiner2
are stable as well. This is illustrated in Figure
5, where the data from Figure 4 were clustered
into two through nine clusters.

Figure 5: The above data clustered with ArrayMiner2

As in Figure 4, the left part of Figure 5 shows
the clusters in the first three classifications of
the data, into two, three and four clusters
respectively. When clustering into two clusters
(box A in Figure 5), ArrayMiner2 detected the
two large groups of data points as the most
salient feature (the “big picture”) in the data.
The middle group was correctly identified as
not being part of either of the two, but since
only two clusters were requested, those data
points were classified as outliers. When
clustering into three clusters (box B), the three
groups were correctly identified and no
outliers were reported. When clustering into
four clusters (box C), a small number of highly
similar data points were detected inside the
large red group and classified as an extra
cluster. These three classifications are also
depicted in the right part of Figure 5, together
with classifications into four through nine
clusters. The diagram confirms the stability of
the clusters supplied by ArrayMiner2, as the
structure of the data is preserved across all
classifications.

Although the successive classifications depict-
ed in the right part of Figure 5 show clusters so
stable that one could think that ArrayMiner2
performs a hierarchical clustering (dendrog-
ram), it is important to note that that is not the
case: ArrayMiner performs a nonhierarchical
clustering, i.e., each of the classifications was
computed completely separately from the
others. Indeed, one could compute the classifi-
cation in two clusters and then in nine, without
computing the others. So we may ask the same
question as above, namely what is the “right”
classification among those in Figure 5? Most
of them in fact: only the level of detail of the
view changes. The biologists can at last safely
choose the level of detail that will help them
discover the interesting clusters of genes.

Real-world data

The examples above illustrate the advantages
of ArrayMiner2 in an easy-to-see manner,
using two-dimensional examples. Real-world
data are in most cases more complex, featuring

a higher number of dimensions (conditions or
experiments, or time points). It turns out that
with increasing number of dimensions,
clustering becomes even more difficult for
methods based on the proximity principle. The
reason is simple: there are as many variances
per cluster as there are dimensions, so a higher
number of dimensions means more trouble for
methods that disregard cluster variance.
This is illustrated in Figure 6 showing the
yeast cell cycle data set “ACGCGT in all
ORFs” (507 profiles, 16 time points), available
in the demo version of GeneSpring. For a
fair comparison, the data were clustered using
k-Means clustering of a leading expression

analysis software, into four through eleven
clusters. As can easily be seen, no clear
structure emerges: as the number of clusters in
the k-Means classifications changes from four
to eleven, the purported associations among
genes change widely as well, and identifying
the “right” number of clusters is extremely
difficult. Yet choosing any of the classifi-
cations invalidates nearly all of the others,
because they match each other so poorly. The
natural question of whether any of the eight k-
Means classifications captures the actual
structure of the data becomes quite up to the
point in face of these results.

Figure 6: Comparison of k-Means classifications of Yeast data

The same data set was then clustered with
ArrayMiner2, using the same distance measure
(Pearson Coefficient) as in Figure 6. The
resulting classifications are again compared

with ArrayMiner’s Classification Compare
facility, in Figure 7. The high stability of the
resulting clusters is clearly visible in the
figure.

Figure 7: Comparison of ArrayMiner2 classifications of the data in Figure 6

ArrayMiner2 vs. Hierarchical Clustering

The notion of structure that should stay stable
whatever the number of clusters is intuitively a
strong one. So much so in fact, that
“clustering” tools based on that notion are in
widespread use. These hierarchical clustering
tools explicitly enforce the concept of stable
structure by constructing a tree of genes (a
dendrogram), such that the “clusters” in the
upper levels of the tree are reunions of
“clusters” in the levels below. The user obtains
clusters of genes by selecting disjoint subtrees
in the dendrogram (not necessarily all in the
same level of the tree).
While such a bottom-up construction does lead
to “clusters” that are stable by definition of the
dendrogram, the approach has a serious
drawback. Since the dendrogram is constructed
from bottom up, the whole tree is strongly
contingent on associations of genes in the
lowest levels. Unfortunately, the “clusters” in
the lowest levels are those that are constructed
with very little if any regard to the global
structure of the data. In particular, the variance
of functional groups in the data cannot be
taken into account at that stage of the
construction of the dendrogram. As a result,
the upper levels of the dendrogram often miss
the true structure of the data.
Although ArrayMiner2’s clusters show a near
tree-like stability, it is not a result of a
hierarchical construction. Instead of recursi-
vely uniting “clusters” within a dendrogram,
ArrayMiner2 performs a rigorous non-hierar-
chical clustering, with the level of detail
depending on the requested number of clusters.
The fact that tree-like comparisons of the
resulting clusters can be subsequently obtain-
ed, as in Figure 5 and Figure 7, is simply due

to the fact that a stable structure in the data is
correctly identified regardless of the requested
number of clusters.

Conclusions

ArrayMiner2 constitutes a significant advance
in gene expression clustering. Its capacity to
identify the structure of many gene expression
data sets significantly better than methods
based on the proximity principle yields a non-
hierarchical clustering method that supplies
remarkably stable clusters when the requested
number of clusters changes. As a result, the
nearly-intractable problem of the “right”
number of clusters all but disappears:
ArrayMiner2’s clusters are highly reliable
whatever their number in a classification.
Furthermore, ArrayMiner2 solves the problem
of outliers that perturbs most other clustering
methods. Outliers are detected as not
belonging to any cluster, allowing the
biologists to spot these unique patterns, leading
them to discovery of previously unsuspected
phenomena or data collection problems.

Completed by a unique graphical user interface
featuring clusters shown as 3D translucent
solids viewable from any angle by a simple
mouse drag, the innovative Classification
Compare facility for visually easy comparison
of various classifications, and many other
intuitive viewing tools, ArrayMiner2 offers an
unequaled power and user experience in gene
expression analysis.

For availability and/or to request a fully
functional demo of ArrayMiner, visit our
website at http://www.optimaldesign.com.

http://www.optimaldesign.com

	ArrayMiner(2 by Optimal Design
	A New Class of Algorithm for Gene Expression Clustering
	A limitation of current clustering tools
	Accounting for cluster variance
	How many clusters?
	Real-world data
	ArrayMiner2 vs. Hierarchical Clustering
	Conclusions

